Universität zu Köln

8. Übung zur Vorlesung Physikalische Chemie I WS 12/13

07.12.2012

Mathematisch-Naturwissenschaftliche Fakultät

Institut für Physikalische Chemie

Prof. Dr. Bernd Tieke

Telefon (0) 221 470 2440 Telefax (0) 221 470 7300 tieke@uni-koeln.de www.uni-koeln.de/math-nat-fak/ phchem/tieke/index.html

40. Aufgabe:

Der Wirkungsgrad einer Carnot-Maschine beträgt ε = 40 %. Die Temperatur des kälteren Reservoirs R_2 soll konstant auf T_2 = 12 °C gehalten werden. Der Wirkungsgrad der Maschine kann gesteigert werden, indem man die Temperatur T_1 des wärmeren Reservoirs R_1 erhöht. Um wieviel Kelvin muss die Temperatur T_1 gesteigert werden, damit der Wirkungsgrad auf 50 % zunimmt?

41. Aufgabe:

Wieviel Arbeit ist mindestens aufzuwenden, um 250 g Wasser von 0 °C in einem Zimmer mit einer Lufttemperatur von 20 °C gefrieren zu lassen? Wieviel Zeit bräuchte eine ideale Kältemaschine mit einer Leistung von 100 W mindestens dazu?

42. Aufgabe:

Die Entropie von Ammoniak bei 298 K ist 192,5 J K⁻¹ mol⁻¹. Berechnen Sie die Entropie bei 100 und 500 °C (Voraussetzung: konstanter Druck; $C_{p,m} = a + bT + cT^{-2}$ mit a = 29,75 J K⁻¹ mol⁻¹, $b = 25,10 \cdot 10^{-3}$ J K⁻² mol⁻¹, $c = -3,046 \cdot 10^{-6}$ J K mol⁻¹).

43. Aufgabe:

Berechnen Sie die Entropieänderung für 1 mol H_2O , das von -50 °C auf 500 °C bei konstantem Druck (1 atm) erhitzt wurde, aus den folgenden Daten:

Schmelzenthalpie bei 0 °C: 6,004 kJ mol⁻¹, Verdampfungsenthalpie bei 100 °C: 40,660 kJ mol⁻¹, mittlere Wärmekapazität H₂O (f): 35,56 J K⁻¹ mol⁻¹,

Wärmekapazität H_2O (g): 30,20 + 0,00992 T J K⁻¹ mol⁻¹,

mittlere Wärmekapazität H₂O (fl): 75,34 J K⁻¹ mol⁻¹.

44. Aufgabe:

Berechnen Sie mit Hilfe der in der Tabelle (jeweils bei T = 298 K) gegebenen Standard-Bildungsenthalpien $\Delta_b H^\circ$ und Standard-Entropien S° die Werte von ΔH° , ΔS° und ΔG° bei T = 298 K für die Bildung von a) 1 mol Ammoniak aus den Elementen und b) 1 mol Lachgas aus den Elementen. Entscheiden Sie, ob die Hin- oder die Rückreaktion spontan erfolgt.

Gas	Δ _b H° (kJ·mol ⁻¹)	S° (J·K ⁻¹ ·mol ⁻¹)
N ₂ O	82,0	291,9
N_2	0	191,6
O_2	0	205,1
NH_3	-46,1	192,5