Universität zu Köln

Mathematisch-Naturwissenschaftliche Fakultät

7. Übung zur Vorlesung Physikalische Chemie II SS 13

Institut für Physikalische Chemie

20.06.2013

Prof. Dr. Bernd Tieke

Telefon (0) 221 470 2440 Telefax (0) 221 470 7300 tieke@uni-koeln.de www.uni-koeln.de/math-nat-fak/ phchem/tieke/index.html

27. Aufgabe:

Die molaren Grenzleitfähigkeiten von KCl, KNO₃ und AgNO₃ sind 149,9, 145,0 und 133,4 S cm² mol⁻¹ (bei 25 °C). Wie groß ist die molare Grenzleitfähigkeit von AgCl bei dieser Temperatur?

28. Aufgabe:

Die Beweglichkeiten von H $^+$ und Cl $^-$ in Wasser bei 22 °C betragen 3,623 · 10^{-3} und 7,91 · 10^{-4} cm 2 s $^{-1}$ V $^{-1}$. Welchen Anteil am Stromtransport haben die Protonen in $1,0 \cdot 10^{-3}$ -molarer wässriger Salzsäure? Welchen Anteil am gesamten Stromtransport haben sie, wenn zu der Lösung so viel NaCl zugesetzt wird, dass sie 1,0 mol L $^{-1}$ des Salzes enthält? Sowohl die Konzentration als auch die Beweglichkeit der Ionen ist für den Stromtransport entscheidend. Die Ionenbeweglichkeit von Na $^+$ ist 5,19 · 10^{-4} cm 2 s $^{-1}$ V $^{-1}$.

29. Aufgabe:

Die Äquivalentleitfähigkeit einer 0,01 N Lösung von $CaCl_2$ in Wasser sei 120,36 Ω^{-1} cm². Rechnen Sie diesen Wert in die molare Leitfähigkeit mit der Einheit S m² mol⁻¹ um.

30. Aufgabe:

Zeigen Sie, dass die Ionenstärke I und die Molalität m der wässrigen Lösungen von KCl, MgCl₂, FeCl₃, Al₂(SO₄)₃ und CuSO₄ wie folgt zusammenhängen: I(KCl) = m, $I(MgCl_2) = 3$ m, $I(FeCl_3) = 6$ m, $I(Al_2(SO_4)_3) = 15$ m und $I(CuSO_4) = 4$ m.